Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Stem Cells ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38604748

RESUMEN

Acetaldehyde dehydrogenase 2 (ALDH2) is the second enzyme involved in the breakdown of acetaldehyde into acetic acid during the process of alcohol metabolism. Roughly 40% of East Asians carry one or two ALDH2*2 alleles, and the presence of ALDH2 genetic mutations in individuals may affect the bone remodeling cycle owing to accumulation of acetaldehyde in the body. In this study, we investigated the effects of ALDH2 mutations on bone remodeling. In this study, we examined the effects of ALDH2 polymorphisms on in vitro osteogensis using human induced pluripotent stem cells (hiPSCs). We differentiated wild-type (ALDH2*1/*1-) and ALDH2*1/*2-genotyped hiPSCs into osteoblasts (OBs) and confirmed their OB characteristics. Acetaldehyde was administered to confirm the impact caused by the mutation during OB differentiation. Calcium deposits formed during osteogenesis were significantly decreased in ALDH2*1/*2 OBs. The expression of osteogenic markers were also decreased in acetaldehyde-treated OBs differentiated from the ALDH2*1/*2 hiPSCs. Furthermore, the impact of ALDH2 polymorphism and acetaldehyde-induced stress on inflammatory factors such as 4-hydroxynonenal and tumor necrosis factor α was confirmed. Our findings suggest that individuals with ALDH2 deficiency may face challenges in acetaldehyde breakdown, rendering them susceptible to disturbances in normal bone remodeling therefore, caution should be exercised regarding alcohol consumption. In this proof-of-concept study, we were able to suggest these findings as a result of a disease-in-a-dish concept using hiPSCs derived from individuals bearing a certain mutation. This study also shows the potential of patient-derived hiPSCs for disease modeling with a specific condition.

2.
Sci Rep ; 14(1): 2477, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291053

RESUMEN

Osteoporosis is a metabolic bone disease that impairs bone mineral density, microarchitecture, and strength. It requires continuous management, and further research into new treatment options is necessary. Osteoprotegerin (OPG) inhibits bone resorption and osteoclast activity. The objective of this study was to investigate the effects of stepwise administration of OPG-encoded minicircles (mcOPG) and a bone formation regulator, parathyroid hormone-related peptide (PTHrP)-encoded minicircles (mcPTHrP) in osteoporosis. The combined treatment with mcOPG and mcPTHrP significantly increased osteogenic marker expression in osteoblast differentiation compared with the single treatment groups. A model of postmenopausal osteoporosis was established in 12-week-old female rats through ovariectomy (OVX). After 8 weeks of OVX, mcOPG (80 µg/kg) was administered via intravenous injection. After 16 weeks of OVX, mcPTHrP (80 µg/kg) was injected once a week for 3 weeks. The bone microstructure in the femur was evaluated 24 weeks after OVX using micro-CT. In a proof-of-concept study, stepwise treatment with mcOPG and mcPTHrP on an OVX rat model significantly improved bone microstructure compared to treatment with mcOPG or mcPTHrP alone. These results suggest that stepwise treatment with mcOPG and mcPTHrP may be a potential treatment for osteoporosis.


Asunto(s)
Osteogénesis , Osteoporosis , Humanos , Ratas , Femenino , Animales , Proteína Relacionada con la Hormona Paratiroidea/farmacología , Ratas Sprague-Dawley , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Osteoporosis/genética , Densidad Ósea , Ovariectomía
3.
Mol Cells ; 46(10): 573-578, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37650216

RESUMEN

The mammalian skin contains hair follicles, which are epidermal appendages that undergo periodic cycles and exhibit mini-organ features, such as discrete stem cell compartments and different cellular components. Wound-induced hair follicle neogenesis (WIHN) is the remarkable ability to regenerate hair follicles after large-scale wounding and occurs in several adult mammals. WIHN is comparable to embryonic hair follicle development in its processes. Researchers are beginning to identify the stem cells that, in response to wounding, develop into neogenic hair follicles, as well as to understand the functions of immune cells, mesenchymal cells, and several signaling pathways that are essential for this process. WIHN represents a promising therapeutic approach to the reprogramming of cellular states for promoting hair follicle regeneration and preventing scar formation. In the scope of this review, we investigate the contribution of several cell types and molecular mechanisms to WIHN.


Asunto(s)
Folículo Piloso , Cicatrización de Heridas , Ratones , Animales , Folículo Piloso/metabolismo , Cicatrización de Heridas/fisiología , Ratones Endogámicos C57BL , Cabello , Piel/metabolismo , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...